
Corresponding author’s E-mail: takakura@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,

aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

167

Research Article

Extending BWDM to Support Various Types and Recursive
Definitions in VDM++ Test Case Generation

Shota Takakura1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1

1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192

Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun,

Nagasaki, 851-2195 Japan

A R T I C L E IN F O

Article History

Received 24 November 2023

Accepted 28 June 2024

Keywords

Software testing

Formal methods

VDM++

Automatic generation

Test cases

A B S T R A C T

Generating test cases from VDM++ formal specifications, which help to eliminate ambiguities, is
both time-consuming and labor-intensive. To solve this problem, our laboratory has developed
BWDM, a tool for automatic test case generation from VDM++ specifications. However, the
original BWDM only supports integer types and cannot handle test cases for operations and
functions with recursive structures. To enhance BWDM's usefulness, this paper introduces
extensions to address these limitations. The results confirm that the extended BWDM can reduce
test case generation time compared to manual methods.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/)

.

1. Introduction

Software plays an important to role support our daily

lives. Hence, its size and complexity have increased,

leading to a greater societal impact of software bugs. One

significant cause of these bugs is the use of natural

language during the early stages of software development,

as natural language is inherently ambiguous. To solve

this problem, formal methods are adopted in software

design. Among these methods, VDM is widely used, and

VDM++ serves as a formal specification language for

object-oriented modeling within VDM [1].

However, designing software with VDM++ necessitates

thorough testing. Manually generating test cases from

VDM++ specifications is both time-consuming and

labor-intensive, and it may result in incomplete testing.

To solve these problems, our laboratory has developed

BWDM [2], [3], an automated tool for generating test

cases from VDM++ specifications. Despite its usefulness,

the current version of BWDM is limited to supporting

only integer types and cannot handle test case generation

for operations and functions with recursive structures.

To enhance the functionality of BWDM, we have

introduced the following extensions:

⚫ A feature to generate test cases for enumerated

types

⚫ A feature to generate test cases for operations and

functions with recursive structures

This paper is organized as follows. Section 2 details the

extended BWDM, Section 3 presents application

examples, and Section 4 discusses and validates the

effectiveness of BWDM. Finally, Section 5 concludes the

paper.

2. The Extended BWDM

This chapter describes on the enhancements in BWDM.

Fig. 1 illustrates the structure of the extended BWDM.

2.1. Enhancing Test Case Generation for

Enumerated Types

To address the limitation of the original BWDM, which

only supported specific types, we enhance both the

SUGISAKA
MASANORI

Journal of Advances in Artificial Life Robotics

Vol. 4(3); June (2025), pp. 167–171

ON LINE ISSN 2435-8061; ISSN-L 2435-8061

https://alife-robotics.org/jallr.html

http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

168

Syntax Analyzer and Symbolic Executor. Specifically,

BWDM is extended to generate test cases for enumerated

types, which consist of a set of unique identifiers.

In the updated Syntax Analyzer, if an enumerated type

definition is detected during the abstract syntax tree

analysis, the type declaration is replaced with a list

containing the declared name and values. When this list

is found in the syntax tree within the Symbolic Executor,

JavaAPI [4] is used to generate enumerated types,

creating constraints for the SMT solver [5] used in the

propositional analyzer section. This process enables the

generation of input data for enumerated types through

symbolic execution.

2.2. Enhancing Test Case Generation for

Recursive Operations/Functions

To address the limitation of the original BWDM in

generating test cases for operations and functions with

recursive structures, we enhance both the Syntax

Analyzer and Test Suite Generator.

In the original BWDM, test cases could not be generated

if the parsing of a called operation/function was

incomplete during test suite generation. This issue

prevented the generation of an abstract syntax tree for

operations/functions with recursive calls.

To resolve this, we introduce an upper limit on the

number of recursive calls for operations or functions with

self-recursive calls. The abstract parse tree analysis

process is modified to be executed after the parse tree

analysis for all definitions is completed. This ensures that

Fig. 1. The structure of the extended BWDM

Class judgeLightColor

Types

public TrafficLight = <BLUE> | <YELLOW> | <RED>;

functions

 judgeLightColor: TrafficLight ==> seq of char

 judgeLightCoulor (color) ==

 if color = <BLUE >

 "The color is blue. "

 if color = <YELLOW>

 "The color is yellow"

 if color = <RED>

 "The color is red."

end judgeLightColor

Fig. 2. VDM++ specification using enumerated type

Function Name : judgeLightColor

Argument Type : color:

Return Type : seq of (char)

Test Cases by Symbolic Execution

No.1 : <BLUE> -> "The color is blue"

No.2 : <YELLOW> -> "The color is yellow"

No.3 : <RED> -> "The clolor is red"

Fig. 3. Output when Fig.2 is applied to

the extended BWDM

169

test data generation occurs only after the complete

parsing of the VDM++ specification. Additionally, a

function is added to terminate the process if self-

recursive calls exceed the set limit during the output data

generation phase in the Test Suite Generator.

3. Application Examples

This chapter presents examples to verify the functionality

of the extended BWDM.

3.1. Verification of Test Case Generation for

Enumerated Types

Fig. 2 illustrates a VDM++ specification that use an

enumerated type for verification purposes, and Fig. 3

displays the results obtained using the extended BWDM.

In Fig. 2, the "judgeLightColor" function defines "public

TraficLight = <BLUE>|<YELLOW>|<RED>;" as the

type. Fig. 3 demonstrates that test cases can be

successfully generated for this enumerated type

definition.

3.2. Verification of Test Case Generation for

Recursive Definitions

Fig. 4 shows a VDM++ specification with a recursive

structure used for verification, and Fig. 5 shows the

corresponding results using the extended BWDM.

In Fig. 4, the "calcSum" function is defined with a

recursive structure. Fig. 5 confirms that test cases can be

generated for this recursive definition.

4. Discussion

4.1. Verification of Test Case Generation for

Enumerated Types

As discussed in Section 3.1, the extended BWDM

successfully generates test cases from definitions using

enumerated types in the VDM++ specification shown in

Fig. 2. This confirms that the extension allows BWDM

to handle enumerated type definitions, thereby enhancing

its usefulness.

4.2. Evaluation of Test Case Generation for

Recursive Definitions

As detailed in Section 3.2, the extended BWDM is

capable of generating test cases from definitions with

recursive structures in the VDM++ specification shown

in Fig. 4. This demonstrates that the extension enables

BWDM to manage recursive definitions, thus improving

its effectiveness.

4.3. Comparison of Test Case Generation Time with

Manual Effort

We evaluate the time required to generate test cases using

the extended BWDM for VDM++ specifications that

include enumerated types and recursive structures,

comparing it to manual efforts. The VDM++

specifications in Fig. 2 and Fig. 4 are used for this

experiment. Manual verification is conducted by five

students: two graduate students and three fourth-year

undergraduates from our laboratory. The time taken to

generate comprehensive test cases without omissions is

recorded. The process is halted once the correct test cases

are produced, and any errors in the manually generated

test cases are noted. The comparison results are presented

in Table 1.

Function Name : ｓumOfNaturalNumbers

Argument Type : value:nat

Return Type : nat

Boundary Values for Each Argument

value: 4294967295 4294967294 0 -1

Test Cases of Boundary Values

No.1 : 4294967295 -> Undefined Action

No.2 : 4294967294 -> Undefined Action

No.3 : 0 -> 0

No.4 : -1 -> Undefined Action

Fig. 5. Output when Fig.4 is applied to

the extended BWDM

Class ｓumOfNaturalNumbers

 calcSum: nat ==> nat

 factorial (value) ==

 if value = 0 then

 0

 else value + calcSum (value - 1)

end sumOfNaturalNumbers

Fig. 4. VDM++ specification with recursive structure

170

Table 1 indicates that using the extended BWDM saves

approximately 14 minutes compared to manual test case

generation. Additionally, human errors have been

observed in the manual process. This study has

confirmed that the extended BWDM, which includes

functions for generating test cases for enumerated types

and recursive structures, reduces both the time and errors

associated with manual test case generation. Therefore,

the extension of BWDM enhances its usefulness.

4.4. Related Works

Ahmad Mustafa et al. conducted a systematic literature

review on automatic test case generation from

requirement specifications [6]. They identified and

discussed 30 primary studies out of 410, highlighting that

most software testing errors from issues in natural

language requirements. Detecting ambiguities and

incompleteness in natural language is challenging and

remains an important problem in requirements.

 On the other hand, BWDM uses the formal specification

language VDM++ for test case generation, producing test

cases from rigorous specifications that eliminate the

ambiguities and incompleteness. Therefore, BWDM

does not face the issues in test case generation from

requirement specifications discussed in [6].

Some approaches to test case generation use UML as

the input [7], [8]. However, it is not possible to capture

all the different characteristics of a system from UML.

In contrast, BWDM uses the formal specification

language VDM++ for test case generation. Hence, it is

possible to capture all the different characteristics of a

system from a detailed VDM++ specification.

Aamer Nadeem et al. proposed a method for automatic

test case generation for VDM++ specifications [9]. This

method determines input data using pre-conditions and

invariant conditions described in the instance variable

definition block. These conditions are equivalence

partitioned, and a representative value is randomly

selected from the valid input domain. Additionally, a test

sequence is generated using a manually prepared test

descriptor defined as a valid test sequence. The input data

and test sequences are then combined to generate test

cases.

In contrast, BWDM can generate test cases solely from

a VDM++ specification. Furthermore, test cases

generated by BWDM can be used for boundary value

testing and domain analysis testing. Test cases generated

through symbolic execution can also cover execution

flows that boundary value analysis might miss.

5. Conclusion

To enhance the usefulness of BWDM, an automatic test

case generation tool for VDM++ specifications, two

important extensions have been implemented. These

extensions address the limitations of supporting only

integer types, and the inability to generate test cases for

operations and functions with recursive structures.

The application examples of the enhanced BWDM were

presented, demonstrating its ability to generate test cases

for definitions using enumerated types and recursive

structures, thereby broadening the range of supported

types. It has been confirmed that the extended BWDM

reduces test case generation time by approximately 14

minutes compared to manual methods. Additionally, the

extended BWDM effectively eliminates human errors.

Consequently, the enhancements described in this paper

improve the usefulness of BWDM.

Future work includes:

⚫ Extending support to types beyond integers and

enumerated types

⚫ Generating test cases for input values with a higher

number of recursive calls

⚫ Generating test cases for mutually recursive

functions

References

1. Overture Project. Manuals.

https://www.overturetool.org/documentation/manuals.ht

ml. (Accessed: 2023-12-18).

2. T. Katayama, F. Hirakoba, Y. Kita, H. Yamaba, K.

Aburada, and N. Okazaki. Application of Pirwise Tsting

into BWDM which is a Test Case Generation tool for the

VDM++ Specification. Journal of Robotics, Networking

and Artificial Life, Vol.6, No.3, pp.143-147, 2019.
3. T. Muto, T. Katayama, Y. Kita, H. Yamaba, K. Aburada,

and N. Okazaki. Expansion of Application Scope and

Addition of a Function for Operations into BWDM which

is an Automatic Test C55-262, 2022.

4. Z3 Prover/z3. htt ases Generation Tool for VDM++

Specification. Journal of Robotics, Networking and

Artificial, Vol.9. No.3, pp.2ps://github.com/Z3Prover/z3.

(Accessed: 2024-6-27).

Table 1. Comparison of test case generation time

https://www.overturetool.org/documentation/manuals.html
https://www.overturetool.org/documentation/manuals.html
https://www.overturetool.org/documentation/manuals.html
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

171

5. Z3: Package com.microsoft.z3.

https://z3prover.github.io/api/html/namespacecom_1_1

microsoft_1_1z3.html. (Accessed: 2024-6-27).

6. Ahmad Mustafa, Wan M. N. Wan-Kadir, Noraini Ibrahim,

Muhammad Arif Shah. Automated Test Case Generation

from Requirements: A Systematic Literature Review.

Computers, Materials & Continua, vol. 67, no.2, pp.

1819-1833, 2021.

7. M. Lafi, T. Alrawashed, A. M. Hammad. Automated Test

Cases Generation From Requirements Specification,

International Conference on Information Technology

(ICIT), pp. 852-857, 2021.

8. Mauricio Rocha, Adenilso Simão, Thiago Sousa. Model-

based test case generation from UML sequence diagrams

using extended finite state machines. Software Quality

Journal, Volume 29, Issue 3, pp.597-627, 2021.

9. Aamer Nadeem, Muhammad Jaffar-Ur-Rehman.

Automated Test Case Generation from IFAD VDM++

Specifications. SEPADS 05: 4th WSEAS International

Conference on Software Engineering, Parallel &

Distributed Systems, No.28, pp.1-7, 2005.

Authors Introduction

Mr. Shota Takakura

He received the Bachelor's degree in

engineering (computer science and

systems engineering) from the

University of Miyazaki, Japan in 2023.

He is currently a Master's student in

Graduate School of Engineering at the

University of Miyazaki, Japan. His

research interests include software

testing, software quality, and formal method.

Dr. Tetsuro Katayama

He received a Ph.D. degree in engineering

from Kyushu University, Fukuoka, Japan,

in 1996. From 1996 to 2000, he has been

a Research Associate at the Graduate

School of Information Science, Nara

Institute of Science and Technology,

Japan. Since 2000 he has been an

Associate Professor at the Faculty of

Engineering, Miyazaki University, Japan. He is currently a

Professor with the Faculty of Engineering, University of

Miyazaki, Japan. His research interests include software

testing and quality. He is a member of the IPSJ, IEICE, and

JSSST.

Dr. Yoshihiro Kita

He received a Ph.D. degree in systems

engineering from the University of

Miyazaki, Japan, in 2011. He is currently

an Associate Professor with the Faculty of

Information Systems, University of

Nagasaki, Japan. His research interests

include software testing and biometrics

authentication.

1. Dr. Hisaaki Yamaba
He received the B.S. and M.S. degrees in

chemical engineering from the Tokyo

Institute of Technology, Japan, in 1988

and 1990, respectively, and the Ph D.

degree in systems engineering from the

University of Miyazaki, Japan in 2011. He

is currently an Assistant Professor with the

Faculty of Engineering, University of

Miyazaki, Japan. His research interests include network

security and user authentication. He is a member of SICE

and SCEJ.

Dr. Kentaro Aburada

He received the B.S., M.S, and Ph.D.

degrees in computer science and system

engineering from the University of

Miyazaki, Japan, in 2003, 2005, and 2009,

respectively. He is currently an Associate

Professor with the Faculty of Engineering,

University of Miyazaki, Japan. His

research interests include computer networks and security.

He is a member of IPSJ and IEICE.

Dr. Naonobu Okazaki

He received his B.S, M.S., and Ph.D.

degrees in electrical and communication

engineering from Tohoku University,

Japan, in 1986, 1988 and 1992,

respectively. He joined the Information

Technology Research and Development

Center, Mitsubishi Electric Corporation in

1991. He is currently a Professor with the

Faculty of Engineering, University of Miyazaki since 2002.

His research interests include mobile network and network

security. He is a member of IPSJ, IEICE and IEEE.

https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802

